4(ax^2-5x+3)=8x^2+bx+c

Simple and best practice solution for 4(ax^2-5x+3)=8x^2+bx+c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(ax^2-5x+3)=8x^2+bx+c equation:


Simplifying
4(ax2 + -5x + 3) = 8x2 + bx + c

Reorder the terms:
4(3 + ax2 + -5x) = 8x2 + bx + c
(3 * 4 + ax2 * 4 + -5x * 4) = 8x2 + bx + c
(12 + 4ax2 + -20x) = 8x2 + bx + c

Reorder the terms:
12 + 4ax2 + -20x = bx + c + 8x2

Solving
12 + 4ax2 + -20x = bx + c + 8x2

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Add '-12' to each side of the equation.
12 + 4ax2 + -12 + -20x = bx + c + -12 + 8x2

Reorder the terms:
12 + -12 + 4ax2 + -20x = bx + c + -12 + 8x2

Combine like terms: 12 + -12 = 0
0 + 4ax2 + -20x = bx + c + -12 + 8x2
4ax2 + -20x = bx + c + -12 + 8x2

Reorder the terms:
4ax2 + -20x = -12 + bx + c + 8x2

Add '20x' to each side of the equation.
4ax2 + -20x + 20x = -12 + bx + c + 20x + 8x2

Combine like terms: -20x + 20x = 0
4ax2 + 0 = -12 + bx + c + 20x + 8x2
4ax2 = -12 + bx + c + 20x + 8x2

Divide each side by '4x2'.
a = -3x-2 + 0.25bx-1 + 0.25cx-2 + 5x-1 + 2

Simplifying
a = -3x-2 + 0.25bx-1 + 0.25cx-2 + 5x-1 + 2

Reorder the terms:
a = 2 + 0.25bx-1 + 0.25cx-2 + -3x-2 + 5x-1

See similar equations:

| -2(4t-5)+5t=6t-9 | | 11x+12+4(3x+4)= | | 3x^2-4=20-2x^2 | | X^4=x^3-6x^2 | | 4/6.25 | | x/2=7-4/3 | | Cos(36)=x/10 | | -2a=-5 | | 8cosx=1+x^2 | | (3x+5)(2x+6)= | | 3(2x+4)-2(x+1)=90 | | 36=-7y+2(y+8) | | (x^3)^1/2/x^9/2 | | x=7-4/3 | | 8r-(3r-15)=10 | | -4t-5=3b+9 | | m^3+m^2+3m-5=0 | | -4t-5=3b+8 | | 7z+2(z-12)=2(z-13)+3(2z+1) | | x^2-mx+15=0 | | 6x-18=2x-2 | | 36=7y+2(y+8) | | 2log(16+4)= | | 7.6x-2.3x=95.4 | | 12c^3-6c^2-6c=0 | | 2/7-5/9= | | 234=39-v | | 5x-2=5(x+8) | | 4(-5x-10)=-140 | | D^2+2d+24= | | 5x^2-8x=5-8x | | y-2=1/2 |

Equations solver categories